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ABSTRACT 

The high-volume, low-latency world of network traffic presents 
significant obstacles for complex analysis techniques. The unique 
challenge of adapting powerful but high-latency models to 
realtime network streams is the basis of our cyber security 
project.  In this paper we discuss our use of NoSQL databases in a 
framework that enables the application of computationally 
expensive models against a realtime network data stream. We 
describe how this approach transforms the highly constrained (and 
sometimes arcane) world of realtime network analysis into a more 
developer friendly model that relaxes many of the traditional 
constraints associated with streaming data.  
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informatics, email, realtime.  
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1 INTRODUCTION AND RELATED WORK 
The challenges associated with the processing and analyses of a 
live network stream are formidable. There are a myriad of open 
source toolkits used for the ingestion and display of network 
packet data; Snort[1], Wireshark (http://www.wireshark.org), and 
Bro IDS[2] are a few of the popular ones, with more listed at 
http://sectools.org. Such tools often provide a comprehensive set 
of ‘filters or rules’ that can be applied to the network stream, 
which in the case of Snort can include upwards of 20,000 rules. 
Although powerful, this low-level localized ‘rule-based’ approach 
breaks down for higher-level analysis functions such as “trend 
analysis of organizational email traffic” or “identify high risk web 
behavior by tracking uncommon web domains.”   
 
The other extreme to these constrained streaming tools is to save 
the network captures to disk and utilize one of the analytically 
rich, publicly available toolkits such as WEKA[6], Orange[3], 
Titan Toolkit[7], etc., on the historical data. The significant 
downside to this file based approach is that the analysis becomes 
forensic in nature and the developer may find themselves 
describing their new algorithm results against the Enron Email 
database or a p-cap file from 6 months ago. From personal 
experience, after presenting such work our network incident 
response team shook their heads, grumbled about the lack of 
relevancy, and went back to writing new rules for the corporate 
intrusion detection system (IDS). 
 
The rest of this paper describes our use of NoSQL databases to 
‘cross the chasm’ between traditional offline analysis and realtime 
network systems. This approach enables the application of 
analytical models to streaming network data with the results 
presented to a network defender within 10-20 seconds. In addition 
our system provides a flexible environment where different 
languages/scripts are welcome, components are interchangeable 
and most importantly it’s remarkably resilient to unstable 
research-focused code. 

2 APPROACH 
Initially our project investigated a development model within an 
existing realtime packet processing toolkit but we quickly 
encountered constraints that would not allow us to work on our 
higher-level analysis goals. We also struggled with the unfamiliar 
and inflexible development environment. The team then moved to 
an ‘offline’ development model using our favourite toolkits and 
scripting languages. After several meetings with the network 
incident response team we realized that our techniques would 
have substantially less impact if not incorporated into the 
production network system. Thus the project had three significant 
tension points: 
 
• Familiar development environment in tension with a 

constrained and unfamiliar packet processing library 
• Agile research software (read: “buggy”) in tension with its 

deployment into a production system 
• Analysis goals requiring large windows of data in tension with 

the transient, streaming network data 
 

Our approach incorporates the use of a NoSQL database as the 
key element in the mitigation of these three tension points (see 
Figure 1).  
  

 
Figure 1: Conceptual diagram of the approach used for our cyber 
defense system illustrating the central role served by our NoSQL 
database. 

2.1 NoSQL vs. Traditional RDBMS 
Here we briefly discuss our use of a NoSQL database (or data 
store) as opposed to a traditional database (often referred to as an 
RDBMS). We chose NoSQL primarily because its schema-less 
key-value storage allows arbitrarily organized data into the 
database, and secondly because of its  simple mechanisms for 
storage of binary data. The processing and analysis of malicious 
emails is one of our project’s major use cases and the storage of 
email serves as a good exemplar for both of these issues. 



 
Figure 2: Screenshot of an email stored in one of our NoSQL databases 
(CouchDB  http://couchdb.apache.org).  
 
The storage of emails exercises both the schema-less architecture 
(arbitrary metadata fields) and the binary storage (for 
attachments). The email depicted in Figure 2 has been cropped but 
this particular email has about 15 metadata fields of various 
origin, an attachment (a Microsoft Word doc) and two bundled 
mime-types (html and plain text). 

2.2 Benefits of a loosely coupled system 
Traditionally network packet processing and analysis is 
accomplished with a tightly coupled software system. The 
“always on” world of network packets will often impose a fairly 
rigorous set of system constraints around latency, throughput, 
performance and resources. In our experiences these constraints 
often lead to frustrations either with the development environment 
or in our inability accomplish a higher level analysis task. The 
fundamental role of the database in our system is to change the 
traditional tightly coupled software system into a loosely coupled 
“federated” system. The benefits of this transformation are 
substantial and reflect themselves throughout the rest of the paper; 
in particular the loose coupling helps us address many of the key 
challenges associated with our tension points. 

2.3 Packets to database 
  Packet processing is a production world where services and 
systems are literally expected to run 24/7 bug-free. As developers 
in a research project, we struggled with the pragmatics of 
deploying new algorithms within one of these environments. We 
have to balance our enthusiasm for new algorithms and tools with 
maintaining flawless production-system stability. Our approach 
was to completely decouple the packet processing from the rest of 
the software pipeline (we are currently using the open source Bro 
IDS and an internal proprietary system).  Both systems are 
interchangeable and primarily do packet reordering and re-
sessionization. Email is a good example of what this functionality 
does: 

 
Figure 3: Four emails (green, red, purple and orange) scattered within 
the “firehose” of data packets transported by a network link.  A typical 
corporate network supports a large number of protocols: HTTP(web), 
FTP(file transfer), DNS(name resolution), and SMTP(email).  

 

Our four different emails exist within the “sea” of other network 
traffic; the packet processing system simply aggregates the 
packets associated with a particular flow and places them into our 
NoSQL database with a bit of meta data (source_ip, dest_ip, port, 
flow_id, and datetime). 

2.4 Feature Extraction 
The next step in our pipelined process is feature extraction and it 
clearly demonstrates the benefits afforded by both the NoSQL 
database and the loosely coupled system. The aggregated packets 
are stored in the database as raw bytes by the packet capture 
engine. The organization of bytes in an email message, which in 
actually is a fairly sophisticated hierarchical container, can be 
complex and is covered in numerous RFCs. Fortunately there is a 
Python module (email) that helps decipher, traverse and unpack 
an email into its constituent parts: plain text, html, attachments, 
and the long, variable length, set of metadata tags. The feature 
extraction script simply loops over all new incoming emails, pulls 
the raw bytes from the database, organizes the email into its 
constituent parts and places those back into the database. This 
approach enables the developers (and more importantly the 
network defenders) to ‘at a glance’ see everything about that 
email including, if necessary, the raw bytes associated with the 
network packet capture. At this point the email is ready for 
downstream processing by various analytic algorithms. See Figure 
2 above. 

2.5 MapReduce Views  
As an alternative to the traditional relational query language 
(SQL), many NoSQL databases provide filtering and MapReduce 
frameworks. A variant of MapReduce called incremental 
MapReduce provides capability that becomes absolutely critical 
when working with streaming data stores. Incremental 
MapReduce means that the MapReduce can be incrementally 
updated with just the new data coming in and the results are valid 
for the entire data store. CouchDB supports incremental 
MapReduce natively and MongoDB (the other NoSQL database 
we use) supports it indirectly with some additional bookkeeping. 

2.5.1 Pipeline Management 
Incremental MapReduce views manage the entire pipeline process 
efficiency in the complex world where new data is continuously 
streaming in and existing data is continuously changing state. A 
concrete example of pipeline management is feature extraction, 
the second stage in the pipeline.  When emails first come into the 
database they are basically just big binary blobs and do not have 
much metadata. The feature extraction view ‘emits’ documents 
without the features_extracted tag. A script pulls that view, 
extracts features for that document, marks it with 
(features_extracted=True) and moves on. Benefits to this 
approach include the following: 
 
• If the feature extraction script crashes, the document causing 

the crash will not get marked and can be used for debugging. 
Note: Because we are no longer tightly coupled with the packet 
processing our script crash has no impact on the packet 
collection. This benefit in particular cannot be overstated as it 
squarely addresses one of our key tension points and allows 
research software to run side-by-side with the production 
network functions. 

• After the crashing script is fixed, it can simply be restarted and 
it will automatically play catch-up on the emails that have piled 
up in the meantime. 



• At any point you can run a script that ‘un-tags’ some of the 
documents. If you have a new version of the feature extraction 
script you can go un-tag the last days worth of documents and 
the script will automatically include those in its processing. 

2.5.2 Text Analysis 
The views used for text analysis process are more complex and 
illustrate the true power of incremental MapReduce. Here we 
provide pseudo code (the real views are written in Erlang). 

 
<<< Feature Dictionary View >>> 
Map: 
  if doc[“include_in_model”]: 
    for feature,count in doc[“feature_vector”]: 
      emit (feature, count) 
 
Reduce: 
  # Reduce sums the counts associated with each feature 
  function (key, values) {  
    return sum(values) 
  } 

 
 
<<< Feature Table View >>> 
Map: 
  if doc[“include_in_model”]: 
    for feature,count in doc[“feature_vector”]: 
      emit (doc[“id”], feature, count) 
 
Reduce: 
# None 

 
As shown in Figure 1, the system’s real power is the ability to 
compute a set of analytical models on a the corpus as a whole and 
then have those models applied to the real time incoming network 
stream. Looking at Figure 6 in the next section, we see that the 
input into our Latent Dirichlet Allocation (LDA) model is a sparse 
feature frequency matrix that can be extremely large (number of 
emails X number of features). In particular the use of of the two 
incremental MapReduce views above allow this matrix to be kept 
up-to-date in real time for a significant number of emails. 

2.6 Model Generation and Evaluation 
The detailed coverage of the algorithms used for model generation 
and evaluation are beyond the scope of this paper, but we did 
want to illustrate one concrete example of how the database 
benefits model generation, model storage, and realtime model 
evaluation against incoming network data. 

 
 

Figure 6: The sparse input feature matrix to our Latent Dirichlet 
Allocation (LDA) model is constructed from the incremental 
MapReduce views provided by our NoSQL database.  

 
The use of a sparse feature frequency matrix is common for 
text/feature analysis algorithms. Although conceptually simple the 
construction and maintenance of this matrix can be challenging 
when placed into a system where new data is continuously coming 

in, old data is getting expired, and the columns of the matrix 
might be based on statistical sampling of a large database (our 
system has all of the above). By utilizing the views described in 
section 3.5.2 we can properly construct and maintain this matrix. 
The feature_dictionary_view provides a global index for each 
unique feature and the feature_table_view provides the features 
associated with each observation(document). The generation and 
evaluation of models varies based on domain and model types, but 
for our example of using LDA on email features the method is as 
follows: 

 
• Run a sampling process which statistically samples a large 

number of the observations in the database (by simply adding 
the include_in_model tag to each of the samples). 

 
• The views now automatically update themselves with the 

new sampled observations. 
 

• Run model generation process: Pulls the views described 
above which generate the feature matrix which is used 
downstream to generate various models. 

 
• The models are versioned and stored into the database. 

 
• Run the model evaluation process: Pull the models + new 

emails from the database, evaluate emails against the models 
and place the results of the evaluations back into the 
database. 

 
The flexibility afforded by this approach is significant, squarely 
hitting our “familiar development environment” tension point.  
Using the database as an integration point means each part of the 
process is orthogonal to the rest; the sampling could be a python 
script using an “R” interface, the model generation and evaluation 
could be done using a Java Library. Also since database drivers 
are socket based, each part of the process could be run on entirely 
separate machines (we often do exactly that when working 
on/debugging a particular part of the pipeline).  

 

2.7 Web Interface    
The results of this pipeline must be presented to the end user in 
order to make useful decisions based on the available data. We 
chose the web for our UI deployment target due to its increasingly 
rich set of expressiveness through HTML5 and its ease of 
deployment to a wide number of users. Splunk’s web application 
environment enables query management and data drill-down, in 
addition to the use of Splunk’s rich set of visual tools. We 
augmented these tools with networks and charts based on the D3 
Javascript library[5]. The use of a NoSQL database enables the 
web interface to interactively query the database for information 
through the use of anychronous Javascript (Ajax).  



 
 

 
Figure 7: (Top) Web interface used to communicate the analysis results 
to the network defender, where dots fade in and out in realtime with 
model-based location. (Bottom) Another form of the web interface with 
scatter plots, parallel coordinates, and a histogram showing emails 
within the last 60 minutes. 
 

3 CONCLUSIONS AND FUTURE WORK 
In this paper we have discussed a methodology that was used for 
real-time data analytics on a large data stream. We believe that the 
design decisions presented here, such as NoSQL database use, 
decoupled components, and a method for incorporation of deep-
analytics will be useful in a wide variety of large data streaming 
applications. Future directions include codifying these techniques 
into coherent systems of reusable components and testing our 
work with additional database, analytics, and visualization 
systems. 
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